Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x})^2\leq [(x+2y)+(y+2z)+(z+2x)](1+1+1)\)
\(\Leftrightarrow (\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x})^2\leq 9(x+y+z)=9\)
\(\Rightarrow \sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\leq 3\)
Ta có đpcm
Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{\sqrt{x+2y}}{1}=\frac{\sqrt{y+2z}}{1}=\frac{\sqrt{z+2x}}{1}\\ x+y+z=1\end{matrix}\right.\) hay $x=y=z=\frac{1}{3}$