Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vũ manh dũng

cho các số thực không âm a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\) . tìm giá trị nhỏ nhất của biểu thức \(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)

Hoàng Thị Ánh Phương
14 tháng 3 2020 lúc 16:15

Mình đặt biểu thức đó là P

Ta có : \(\sqrt{3a^2+2ab+3b^2}=\sqrt{\left(a-b\right)^2+2\left(a+b\right)^2}\ge\sqrt{2\left(a+b\right)^2}=\sqrt{2}\left(a+b\right)\)

Tương tự ta cũng có :

\(\sqrt{3b^2+2bc+3c^2}\ge\sqrt{2}\left(b+c\right)\) , \(\sqrt{3c^2+2ca+3a^2}\ge\sqrt{2}\left(c+a\right)\)

Suy ra : \(P=\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)

\(\ge\sqrt{2}\left(a+b\right)+\sqrt{2}\left(b+c\right)+\sqrt{2}\left(c+a\right)\)

\(=2\sqrt{2}\left(a+b+c\right)\)

+ ) Áp dụng bất đẳng thức AM - GM :

\(a+b+c=a+1+b+1+c+1-3\ge2\sqrt{a}+2\sqrt{b}+2\sqrt{c}-3=2.3-3=3\)

Suy ra \(P\ge2\sqrt{2}.3=6\sqrt{2}\)

Vậy giá trị nhỏ nhất của \(P=6\sqrt{2}\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{a}+\sqrt{b}+\sqrt{c}=3\\\sqrt{a}=\sqrt{b}=\sqrt{c}=1\\a=b=c\end{matrix}\right.\) \(\Rightarrow a=b=c=1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Kim Taehyung
Xem chi tiết
Thành Nguyễn
Xem chi tiết
🍀Cố lên!!🍀
Xem chi tiết
Vương Thiên Nhi
Xem chi tiết
Big City Boy
Xem chi tiết
le diep
Xem chi tiết
Alone
Xem chi tiết
Thuyết Dương
Xem chi tiết
dia fic
Xem chi tiết