Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đạt Trần Tiến

Cho các số thực dương x,y,z \(\in [0;1] \)Tìm Max

\(T=x+y^{2017}+z^{2018}-xy-yz-zx\)

Akai Haruma
15 tháng 5 2018 lúc 0:07

Lời giải:

\(x,y,z\leq 1\Rightarrow (x-1)(y-1)(z-1)\leq 0\)

\(\Leftrightarrow (xy-x-y+1)(z-1)\leq 0\)

\(\Leftrightarrow x+y+z-xy-yz-xz+xyz-1\leq 0\)

\(\Leftrightarrow x+y+z-xy-yz-xz\leq 1-xyz\leq 1(*)\) (do \(xyz\geq 0\) )

Mặt khác:

\(y,z\in [0;1]\Rightarrow y^{2017}\leq y; z^{2018}\leq z\)

Do đó:

\(T=x+y^{2017}+z^{2018}-xy-yz-xz\leq x+y+z-xy-yz-xz(**)\)

Từ \((*);(**)\Rightarrow T\leq 1\) hay \(T_{\max}=1\)

Dấu bằng xảy ra khi \((x,y,z)=(1,1,0);(0,0,1)\) hoặc hoán vị các bộ số ấy


Các câu hỏi tương tự
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Anh Đỗ Nguyễn Thu
Xem chi tiết
Văn Quyết
Xem chi tiết
Eren
Xem chi tiết
Ryan Park
Xem chi tiết
Cao Thi Thuy Duong
Xem chi tiết
Đạt Trần Tiến
Xem chi tiết
Nguyễn Minh Chiến
Xem chi tiết