\(a+b+c=2017\Rightarrow-c=a+b-2017\)
\(P=\dfrac{1}{a}+\dfrac{1}{b}+a+b-2017\)
\(P=\left(\sqrt{\dfrac{1}{a}}-\sqrt{a}\right)^2+\left(\sqrt{\dfrac{1}{b}}+\sqrt{b}\right)^2-2013\ge-2013\)
\(a+b+c=2017\Rightarrow-c=a+b-2017\)
\(P=\dfrac{1}{a}+\dfrac{1}{b}+a+b-2017\)
\(P=\left(\sqrt{\dfrac{1}{a}}-\sqrt{a}\right)^2+\left(\sqrt{\dfrac{1}{b}}+\sqrt{b}\right)^2-2013\ge-2013\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
Cho 3 số dương a, b, c thay đổi thỏa mãn: \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=2.\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho 3 số dương a, b, c thay đổi thỏa mãn: \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=2.\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
cho a,b,c là các số dương thỏa a+b+c=1.tìm giá trị nhỏ nhất của biểu thức P=\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(1+36abc\right)\)
cho ba số thực không âm a,b,c thỏa mãn ab+ac+bc=1 .Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{a^2+b^2+c^2+3}{a+b+c-abc}\)
Cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{1+a}+\dfrac{2017}{2017+b}+\dfrac{2018}{2018+c}\le1\). Tìm GTNN của \(P=abc\)
Ch a, b, c là 3 số dương thỏa mãn: a+b+c=6. Tìm giá trị lớn nhất của biểu thức: \(A=\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ca}{c+3a+2b}\)
Cho a, b, c là số thực dương thỏa mãn: a+b+c=1. Tìm GTLN của biểu thức: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ac}{b+ac}}\)
cho a, b, c là các số thực dương thỏa mãn a+b+c=1. tìm giá trị nhỏ nhất của biểu thức \(A=\dfrac{1}{2a-a^2}+\dfrac{1}{2b-b^2}+\dfrac{1}{2c-c^2}+3\)