Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thái Đào

cho các số thực dương a,b thỏa mãn:

\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)

tính giá trị biểu thức: P=\(a^{2014}+b^{2014}\)

Hương Yangg
6 tháng 4 2017 lúc 10:12

Hỏi đáp Toán
Vậy P = 2

Lightning Farron
6 tháng 4 2017 lúc 10:23

\(a^{100}+b^{100}=a^{101}+b^{101}\)

\(\Rightarrow a^{101}-a^{100}+b^{101}-b^{100}=0\)

\(\Rightarrow a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\left(1\right)\)

*)Nếu a và b cùng lớn hơn 1 thì: a-1 và b-1 đều dương nên:

\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)>0\) không đúng với \(\left(1\right)\)

*)Nếu a và b cùng nhỏ hơn 1 thì: a-1 và b-1 đều âm nên:

\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)< 0\) không đúng với \(\left(1\right)\)

*)Nếu a và b có 1 số lớn hơn hoặc bằng 1 và 1 số nhỏ hơn hoặc bằng 1

Không mất tính tổng quát, giả sử \(a\ge1;b\le1\)

Ta có:

\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\)

\(\Rightarrow a^{100}\left(a-1\right)=b^{100}\left(b-1\right)\left(2\right)\)

Lại có:

\(a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Rightarrow a^{102}-a^{101}+b^{102}-b^{101}=0\)

\(\Rightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{100}\left(a-1\right)+b\cdot b^{100}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{100}\left(a-1\right)-b\cdot b^{100}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{100}\left(a-1\right)-b\cdot a^{100}\left(a-1\right)=0\) (theo (2))

\(\Rightarrow a^{100}\left(a-1\right)\left(a-b\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}a-1=0\\a-b=0\end{matrix}\right.\) (do \(a>0\))

\(\Rightarrow a=b=1\Rightarrow P=1^{2014}+1^{2014}=2\)


Các câu hỏi tương tự
___Vương Tuấn Khải___
Xem chi tiết
Công chúa Fine
Xem chi tiết
Carthrine Nguyễn
Xem chi tiết
Lê Thùy Nhi
Xem chi tiết
Nguyễn Xuân Nhã Thi
Xem chi tiết
Trần Trân Trân
Xem chi tiết
Trần Hoài Khánh Trang(<3...
Xem chi tiết
Trần Hoài khánh Trang
Xem chi tiết
Cathy Trang
Xem chi tiết