Ta có: \(A=\dfrac{a}{2016-c}+\dfrac{b}{2016-a}+\dfrac{c}{2016-b}\)
\(=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}\)
\(=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}\)
Lại có: \(\dfrac{a}{a+b}>\dfrac{a}{a+b+c};\dfrac{b}{b+c}>\dfrac{b}{a+b+c};\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\)
\(\Rightarrow A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}>\dfrac{a+b+c}{a+b+c}=1\left(1\right)\)
Và \(\dfrac{a}{a+b}< \dfrac{a+b}{a+b+c};\dfrac{b}{b+c}< \dfrac{b+c}{a+b+c};\dfrac{c}{c+a}< \dfrac{c+a}{a+b+c}\)
\(\Rightarrow A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow1< A< 2\) không phải số nguyên