. Cho 3 số thực a, b, c thỏa mãn \(a^3+b^3+c^3=3abc\),Tính giá trị của biểu thức
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
Cho các số thực a, b, c \(\ne\) 0 và đồng thời thỏa mãn:
\(\left\{{}\begin{matrix}a+b+c\ne0\\a^3+b^3+c^3=3abc\end{matrix}\right.\)
Tính giá trị của biểu thức: \(P=\left(2017+\frac{a}{b}\right)\left(2017+\frac{b}{c}\right)\left(2017+\frac{c}{a}\right)\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
cho ba số thực a, b, c thỏa mãn: \(\left\{{}\begin{matrix}a+b+c=9\\a^2+b^2+c^2=27\end{matrix}\right.\)
Tính giá trị biểu thức \(P=\left(a-2\right)^{2015}+\left(b-3\right)^{2016}+\left(c-4\right)^{2017}\)
Cho 3 số dương a, b, c thay đổi thỏa mãn: \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=2.\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho 3 số dương a, b, c thay đổi thỏa mãn: \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=2.\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
cho a,b,c là 3 số thực dương thỏa mãn abc=1. Tìm GTLN của biểu thức
\(P=\frac{1}{a\left(a+bc\right)+2b\left(b+ac\right)}+\frac{1}{b\left(b+ac\right)+2c\left(c+ab\right)}+\frac{1}{c\left(c+ab\right)+2a\left(a+bc\right)}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 6. Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a^3}{\left(b+c\right)^2}+\frac{b^3}{\left(c+a\right)^2}+\frac{c^3}{\left(a+b\right)^2}\)
Cho 3 số dương a,b,c thỏa mãn ab+bc+ca=8. Tìm giá trị nhỏ nhất của:
\(P=3\left(a^2+b^2+c^2\right)+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\)