Cho các số hữu tỉ thỏa mãn\(\left\{{}\begin{matrix}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{matrix}\right.\)
Tính giá trị biểu thức:M=a3-a+3b4-b+5c5-c+7d6-7d
cho -1 ≤ a,b,c ≤ 1 va 1 + 2abc ≥ a2 + b2 +c2. cmr: 1 + 2a2b2c2 ≥ a4 + b4 + c4
Chứng minh các bất đẳng thức:
a) (\(\dfrac{a+b}{2}\))2 ≥ \(\dfrac{a^2+b^2}{2}\)
b) (a10 + b10)(a2 + b2) ≥ (a8 + b8)(a4 + b4)
trắc nghiệm
1. giá trị của đa thức -33+x3+x khi x=-1 là
a.2 b.-1 c.0 d.-1
2.nhân tử*ở vế phải của đẳng thức a3−a=(a2+a).3−a=(a2+a).*
a.a b.-a c.a-1 d.1-a
3.kết quả phép chia (x3+1):(x+1)(x3+1):(x+1)là
a.x2+x+12+x+1 b.x2−x+1x2−x+1 c.(x−1)2(x−1)2 d.x2−12−1
4.đa thức thích hợp điền vào chỗ ... của đẳng thức x+53x−2=...3x2−2xx+53x−2=...3x2−2x
a.x^2+5x b.x^2-5x
cho a4+b4+c4+d4 chia hết cho 12.C/m a2+b2+c2+d2 chia hết cho 12
Cho a,b là các số thực thỏa mãn a2+b2-ab=4.CMR \(\dfrac{8}{3}\le a^2+b^2\le8\)
Cho các số thực a,b,c thỏa mãn \(a^2+b^2+c^2=3\) và \(a+b+c+ab+bc+ca=6\)
Tính giá trị biểu thức : A=\(\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2019}}\)
Cho a b c là 3 số thực dương thỏa a2+b2+c2=3 Cm a4/b+2+b4/c+2+c4/a+2>=1
Cho a b c là 3 số thực dương thỏa a+b+c=1 CM a2/a+b+b2/b+c+c2/c+a>=1/2