cho -1 ≤ a,b,c ≤ 1 va 1 + 2abc ≥ a2 + b2 +c2. cmr: 1 + 2a2b2c2 ≥ a4 + b4 + c4
cho a+b+c=0 và a≠0,b≠0,c≠0 tính M
M=a2/a2-b2-c2 +b2/b2-c2-a2 +c2/c2-a2-b2
Cho cac so duong abcd a+b+c+d =4.cm1/ab+1/cd+1/bc+1/da lon hon hoac bang a2+b2+c2+d2
Cho đa thức f(x) có bậc lớn hơn 1, có hệ số nguyên thỏa mãn f(5) chia hết cho 7, f(7) chia hết cho 5. CMR: f(12) chia hết cho 35
12 Tìm a,b,c để:
a) (x^4+ax^3+bx+c) chia hết cho (x-3)^3
b) (x^5+x^4-9x^3+ax^2+bx+c) chia hết cho (x-2)(x+2)(x+3)
c) (2x^4+ax^2+bx+c) chia hết cho x-2 và khi chia cho x^2-1 thì dư x
Với mọi n thuộc N. CMR:
a. (9 . 10n + 18) chia hết cho 27.
b. (92n + 14) chia hết cho 5.
c. [n(n2 + 1)(n2 + 4) chia hết cho 5.
d. [mn(m2 - n2)] chia hết cho 3 với mọi m, n thuộc Z.
e. (n12 - n8 - n4 + 1) chia hết cho 512
Chứng minh các bất đẳng thức:
a) (\(\dfrac{a+b}{2}\))2 ≥ \(\dfrac{a^2+b^2}{2}\)
b) (a10 + b10)(a2 + b2) ≥ (a8 + b8)(a4 + b4)
Bài 1: a. Giải phương trình nghiệm nguyên: x2+xy-2x+1=x+y
b. Cho x,y là các số thực khác thỏa mãn: x2-2xy+2y2-2y-2x+5=0
Tính P = xy+x+y+15/4xy
Bài 2: Cho a,b nguyên dương với a+1 và b+2007 đều chia hết cho 6. CMR: 4a+a+b chia hết cho 6
Bài 3: Cho a,b >0 thỏa mãn a+b=1
Tính GTNN của P =1/ab+40(a4+b4)(bài này dùng bất dẳng thức cô-si và bunhiacopxki)
Cho a, b, c thuộc số thực dương, thỏa mãn a2+b2+c2=3
CMR : (a2b+b2c+c2a)(a+b+c)≥9abc
(c2 là c^2 nha...)