1.Cho a,b là các số dương thay đổi thỏa mãn a+b=2
Tính GTNN biểu thức D=\(\frac{a+b}{ab}+\frac{ab}{a+b}\)
2. Cho 3 số dương x,y,z thỏa mãn x+y+z=1
Tìm GTLN của biểu thức B=\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
3. Tính GTNN của biểu thức T=\(\sqrt{x^2-x+2}+\sqrt{x^2+x+2}\)
4. Tính GTLN A=\(\sqrt{x-1}+\sqrt{y-2}\) biết x+y=4
Cho 3 số thực dương x, y, z thỏa mãn x + y + z = 3. Tìm GTNN của biểu thức:
S = \(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
Cho ba số thực x, y, z thỏa mãn x2+y2+z2=3. Tìm GTNN của biểu thức: M=\(\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
Cho x, y,z là các số dương thay đổi thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=2017\)
Tính giá trị lớn nhất của biểu thức: P=\(\frac{1}{2x+3y+3z}+\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}\)
Cho các số dương x,y,z thỏa mãn: x(x+1) + y(y+1) + z(z+1) \(\le18\)
Tìm GTNN: \(P=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)
Cho x,y,z thỏa mãn \(\frac{1}{x+2y}+\frac{1}{y+2z}+\frac{1}{z+2x}=1\)
Tìm GTNN của biểu thức \(P=\frac{x}{x+2yz}+\frac{y}{y+2zx}+\frac{z}{z+2xy}\)
cho x,y,z là 3 số thực dương thỏa mãn x+y+z=3. tìm giá trị nhỏ nhất của biểu thức \(Q=\frac{x+1}{1+y^2}+\frac{y+1}{1+z^2}+\frac{z+1}{1+x^2}\)
1, cho 3 số thực dương x,y,z thỏa mãn:x+y+z=9
Tìm GTNN của biểu thức: S=\(\frac{x^3}{x^2+xy+y^2}+\frac{y^3}{y^2+yz+z^2}+\frac{z^3}{z^2+zx+x^2}\)
Cho ba số thực dương x,y,z thỏa mãn x+y+z = 2. Tìm GTNN của biểu thức:
\(P=\dfrac{1}{xy}+\dfrac{1}{yz}\)