Cho biểu thức A = a3 +b3 + c3+a2(b+c)+b2(c+a)+c2(a+b)Cho a+b+c = 1 .Hãy tìm giá trị nhỏ nhất của A
g
cho a,b,c là các số thực thỏa mãn : \(a+b+c=2014\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2014}\)
tính giá trị của biểu thức : \(M=\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}\)
Cho các số a,b,c thỏa mãn điều kiện: a2+b2+c2=1 và a3+b3+c3=1.
Tính giá trị của biểu thức: S=a2+b9+c1945
B1: Cho hình thang cân ABCD ( AB // CD; AB < CD ). Biết AC cắt BD tại O và góc DOC = 600. Gọi I, J, K theo thứ tự là trung điểm OD, OA, BC. CM tam giác IJK đều.
B2: Cho x, y thỏa mãn 2x + y = 6.
Tìm giá trị nhỏ nhất của biểu thức A = \(4x^2+y^2\)
B3: Cho x, y thỏa mãn \(x^2+y^2=50.\) Tìm giá trị nhỏ nhất và lớn nhất của biểu thức B = xy
1. Cho biểu thức :
a) Rút gọn biểu thức A.
b) Tính giá trị biểu thức A khi x thỏa mãn: 2014 - |2x - 1| = 2013
c) Tìm giá trị của x để A < 0.
d) Tìm các giá trị nguyên của x để A có giá trị là một số nguyên.
cho 3 số a,b,c có tổng khác 0 thỏa mãn: a(a² -bc) + b(b² – ca) + c (c² – ab) = 0 Tính giá trị của biểu thức:
P = \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\)
Cho a;b;c bất kì thỏa mãn ab +bc +ca =5
Tìm giá trị nhỏ nhất của biểu thức :M = 3a2 +3b2+c2
-Cho a,b thuộc Z thỏa (a^2-ab+b^2) chia hết cho 2. Chứng minh(a^3+b^3) chia hết cho 8
-Tìm hai số nguyên liên tiếp mà hiệu các bình phương của hai số đó bằng 2013
-Tìm các số nguyên n để 2013/[(4n^2)-4n+3] có giá trị nguyên
-Cho biết tồn tại hai số thực a,b khác 0 thỏa 1/a -1/b =1/ab. Tính giá trị M= (a^3 - b^3 +1)/(a^2 + b^2 -1)
cho 3 số a,b,c thỏa mãn điều kiện \(\frac{1}{bc-a^2}+\frac{1}{ca-b^2}+\frac{1}{ab-c^2}=0\)
CMR: \(\frac{a}{\left(bc-a^2\right)^2}+\frac{b}{\left(ca-b^2\right)^2}+\frac{c}{\left(ab-c^2\right)^2}=0\)