a(a2 - bc) + b(b2 - ca) + c(c2 - ab) = 0
a3 - abc + b3 - abc + c3 - abc = 0
a3 + b3 + c3 - 3abc = 0
(a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
a2 + b2 + c2 - ab - ac - bc = 0 (a + b + c \(\ne\) 0)
2 . (a2 + b2 + c2 - ab - bc - ac) = 2 . 0
2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
a2 - 2ab + b2 + a2 - 2ac + c2 + b2 - 2bc + c2 = 0
(a - b)2 + (a - c)2 + (b - c)2 = 0
\(\left[\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)
\(\left[\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)
a = b = c
Thay b = a và c = a vào P, ta có:
\(P=\frac{a^2}{a^2}+\frac{a^2}{a^2}+\frac{a^2}{a^2}\)
\(=1+1+1\)
\(=3\)
ĐS: 3