Ta có \(\dfrac{a^2}{a^2-b^2-c^2}\)=\(\dfrac{a^2}{a^2-\left(b+c\right)^2+2bc}\)
=\(\dfrac{a^2}{\left(a+b+c\right)\left(a-b-c\right)+2bc}\)=\(\dfrac{a^2}{2bc}\)
=>P=\(\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)=\(\dfrac{a^3+b^3+c^3}{2abc}\)
ta có a3+b3+c3-3abc=(a+b)3-3ab(a+b)+c3-3abc=(a+b+c)[(a+b)2-(a+b)c+c2 ] -3ab(a+b+c) =0 vì a+b+c=0
=>a3+b3+c3=3abc
=>P=\(\dfrac{3abc}{2abc}\)=\(\dfrac{3}{2}\)
vậy P=\(\dfrac{3}{2}\)