1, Cho x; y; z ≠0 và \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\)+ \(\dfrac{1}{z}\)=\(\dfrac{2}{2x+y+2z}\). Cmr: (2x+y)(y+2z)(z+x)= 0
2, Cho \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\). Cmr: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
Gấp ạ, ai giúp mình với!!!!
1) cho \(\dfrac{x}{x^2+x+1}=\dfrac{-2}{3}\) . Tính giá trị biểu thức M=\(\dfrac{x^2}{x^4+x^2+1}\)
2) cho a khác 0,b khác 0,c khác 0 và a + b + c = 0
Tính giá trị biểu thức
M =\(\dfrac{a}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c}{ac+c+1}\)
Cho a,b,c đôi một khác nhau và a+b+c=0. Tính
P= \(\dfrac{ab^{2}}{a^{2}+b^{2}-c^{2}}\)+\(\dfrac{bc^{2}}{b^{2}+c^{2}-a^{2}}\)+\(\dfrac{ca^{2}}{c^{2}+a^{2}-b^{2}}\)
Chú ý nếu \(c>0\) thì \(\left(a+b\right)^2+c\) và \(\left(a-b\right)^2+c\) đều dương với mọi a, b
Áp dụng điều này chứng minh rằng :
a) Với mọi giá trị x khác \(\pm1\), biểu thức :
\(\dfrac{x+2}{x-1}.\left(\dfrac{x^3}{2x+2}+1\right)-\dfrac{8x+7}{2x^2-2}\) luôn có giá trị dương
b) Với mọi giá trị của x khác 0 và khác - 3, biểu thức :
\(\dfrac{1-x^2}{x}.\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3}{x^2+3x}\) luôn có giá trị âm
Cho hai biểu thức:
A = \(\dfrac{x+6}{5-x}\) và B = \(\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}+\dfrac{x^2-8x-25}{2x^2-10x}\)
a) Tính giá trị biểu thức A với x thỏa mãn \(x^2+5x=0\)
b) Chứng minh: B = \(\dfrac{x-2}{x-5}\)
c) Tìm giá trị của x để \(B-A=0\)
d) Tìm tất cả giá trị nguyên của x để biểu thức A có giá trị nguyên.
cho a,b,c>0 và \(a+b+c\le1\)
cmr \(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge9\)
Bài 148: Tính giá trị của biểu thức biết a+b+c=0
\(A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
Bài 149: CMR nếu \(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ac\right)\left(a-abc\right)\)
và các số a, b, c, a-b khác 0 thì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)
Cho ba số a, b, c thỏa mãn điều kiện: \(\dfrac{1}{bc-a^2}+\dfrac{1}{ca-b^2}+\dfrac{1}{ab-c^2}=0\)
Chứng minh rằng: \(\dfrac{a}{\left(bc-a^2\right)^2}+\dfrac{b}{\left(ca-b^2\right)^2}+\dfrac{c}{\left(ab-c^2\right)^2}=0\)
Cho A = \(\left(\dfrac{2x}{x-2}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{6}{x+2}\)
a) Rút gọn biểu thức A
b) Tính giá trị của A biết: \(\left|2x-1\right|=3\)
c) Tìm x để A > 0
d) Tìm x để \(B=\dfrac{2}{x+1}\)