Đặt `A=(1-3x)/(2x)+(3x-2)/(2x-1)+(3x-2)/(2x-4x^2)`
`=(2x(3x-2))/(2x(2x-1))-((3x-1)(2x-1))/(2x(2x-1))-(3x-2)/(2x(2x-1))`
`=(6x^2-4x-6x^2+5x-1-3x+2)/(2x(2x-1))`
`=(-2x+1)/(2x(2x-1))`
`=-1/(2x)`
`2x=1/(483)`
`=>A=-1/(1/483)=-483`
\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
⇔\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x\left(1-2x\right)}\)
⇔\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}-\dfrac{(3x-2)}{2x\left(2x-1\right)}\)
ĐKXĐ: \(\left\{{}\begin{matrix}2x\ne0\\2x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\2x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
MTC: 2x(2x-1)
\(\dfrac{1-3x\left(2x-1\right)}{2x\left(2x-1\right)}+\dfrac{(3x-2)(2x)}{(2x-1)(2x)}-\dfrac{(3x-2)}{2x\left(2x-1\right)}\)
\(\Rightarrow1-3x\left(2x-1\right)+\left(3x-2\right)\left(2x\right)-\left(3x-2\right)\)
\(\Leftrightarrow1-6x^2+3x+6x^2-4x-3x+2\\ \Rightarrow-4x+3\)
Thay \(x=\dfrac{1}{966}\)vào biểu thức trên
ta có -4x+3= \(-4\times\dfrac{1}{966}+3=\dfrac{-4}{966}+3=\dfrac{-2}{483}+3=\dfrac{-2}{483}+\dfrac{1449}{483}=\dfrac{1447}{483}\)