CM BĐT:
a) \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
b) \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
c) \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d) \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Cho a,b,c > 0
\(Cm:\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Em mạn phép up lên CHH tí rồi mai em gỡ vì em cần gấp ạ ;3
Chứng minh rằng:
a, \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
b, \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
c, \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
d, \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
CMR: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\).Với a, b, c>0
Giúp mk vs các bạn ơi!!!
Bài toán 1. Cho a, b, c là các số thực dương thỏa mãn $latex a+b+c=3$. Chứng minh rằng
$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{\text{2}\left( {{a}^{\text{2}}}+{{b}^{2}}+{{c}^{2}} \right)}{3}\ge 5$
Cho tam giác ABC là độ dài 3 cạnh của một tam giác . C/m \(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2+4abc>a^3+b^3+c^3\)
cho a;b;c thoă mãn là 3 số dương và abc=1
CMR:\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
a)Chứng tỏ rằng: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) với mọi giá trị dương của a,b,x,y
b) Chứng tỏ rằng: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\) với a,b,c dương
B1:C/m
a)\(\dfrac{a^2+b^2}{2}\)\(>=ab\)
b)(a+b)\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)>=4\) (với a>0,b>0)
c)\(a\left(a+2\right)< \left(a+1\right)^2\)