a^2n =x ; x>=0 mọi a; n thuộc n
\(P=2.a.x-3x+5.a.x-7x+3.a.x\)
\(P=10.a.x-10x=10x\left(a-1\right)\)
\(P>0\Rightarrow\left\{{}\begin{matrix}x>0\\a>1\end{matrix}\right.\) ; a>1 => a>0 => kết luân a>1
a^2n =x ; x>=0 mọi a; n thuộc n
\(P=2.a.x-3x+5.a.x-7x+3.a.x\)
\(P=10.a.x-10x=10x\left(a-1\right)\)
\(P>0\Rightarrow\left\{{}\begin{matrix}x>0\\a>1\end{matrix}\right.\) ; a>1 => a>0 => kết luân a>1
Xét đa thức: P = \(2a^{n+1}-3a^n+5a^{n+1}-7a^n+3a^{n+1}\)
a) Thu gọn P
b) Với giá trị nào của a thì P = 0
Cho: A = \(n^6-n^4+2n^3+2n^2\left(\forall n\in N;n>1\right)\)
C/m: A ko phải là số chính phương
Cm với \(\text{m},n\in N\) thì
\(A=\left(\text{m}+2n+1\right)\left(3\text{m}-2n+2\right)\) là số chẵn
>--<
1 . Tìm \(n\in Z\) sao cho \(2n-3⋮n+1\)
2 . Cho x , y , z \(\ne0\) và x - y - z = 0 . Tính giá trị của biểu thức : \(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(Cho\left(x_1\cdot a-y_1\cdot b\right)^{2n}+\left(x_2\cdot a-y_2\cdot b\right)^{2n}+\left(x_3\cdot a-y_3\cdot b\right)^{2n}+......+\left(x_m\cdot a-y_m\cdot b\right)^{2n}\le0\)
Với m,n ∈ N*
Chứng minh: \(\frac{x_1+x_2+x_3+.....+x_m}{y_1+y_2+y_3+.....+y_m}=\frac{b}{a}\)
BT1:
a,\(\left(3x^2-51\right)^{2n}=\left(-24^{2n}\right)\)(n\(\in\)N*)
b,(x-3).(x-8) \(\le\)0
Tìm giá trị nguyên của n để biểu thức sau nguyên:
A=\(\dfrac{n-2}{n+3}\)
B=\(\dfrac{2n-1}{n+1}\)
C=\(\dfrac{2n+3}{n+2}\)
1: cho \(A=\dfrac{2n+3}{n-1}\)
a, tìm điều kiện để A là số hữu tỉ
b, tìm \(n\in Z\) để A có giá trị là số nguyên
2: cho \(x=\dfrac{a}{n},y=\dfrac{b}{n}\left(a,b,n\in Z;n>0;x< y\right)\)
chứng tỏ rằng nếu \(Z=\dfrac{a+b}{2n}\) thì x < z < y
Tìm x biết: \(\left(3x^2-51\right)^{2n}=\left(-24\right)^{2n}\) (với n thuộc N*)