\(A=\dfrac{n-2}{n+3}\)
\(A\) là số nguyên \(\Leftrightarrow n+3=1\)
\(\Leftrightarrow n=-2\)
\(B=\dfrac{2n-1}{n+1}\)
\(B\) là số nguyên \(\Leftrightarrow n+1=1\)
\(\Leftrightarrow n=0\)
\(C=\dfrac{2n+3}{n+2}\)
\(C\) là số nguyên \(\Leftrightarrow n+2=1\)
\(\Leftrightarrow n=-1\)
Ta có:A=\(\dfrac{n-2}{n+3}=\dfrac{\left(n+3\right)-5}{n+3}=1-\dfrac{5}{n+3}\)
Để A∈Z=>\(\dfrac{5}{n+3}\)∈Z
=>5⋮ n+3
=>n+3∈Ư(5)=\(\left\{\pm1;\pm5\right\}\)
=>n∈\(\left\{-2;-4;2;-8\right\}\)
Ta có:B=\(\dfrac{2n-1}{n+1}=\dfrac{2\left(n+1\right)-3}{n+1}=2-\dfrac{3}{n+1}\)
Để B∈Z=>\(\dfrac{3}{n+1}\)∈Z=>3⋮n+1
=>n+1∈Ư(3)=\(\left\{\pm1;\pm3\right\}\)
=>n∈\(\left\{0;-2;2;-4\right\}\)
ta có :C=\(\dfrac{2n+3}{n+2}=\dfrac{2.\left(n+2\right)-1}{n+2}=2-\dfrac{1}{n+2}\)
Để C∈Z=>\(\dfrac{1}{n+2}\)∈Z=>1⋮n+2
=>n+2∈Ư(1)=\(\pm\)1
=>n=-1;-3