a: ĐKXĐ: a>=0; a<>9
b: \(B=\dfrac{2a-6\sqrt{a}+a+3\sqrt{a}-3a-3}{a-9}\)
\(=\dfrac{-3\sqrt{a}-3}{a-9}\)
`a)`\(ĐKXĐ:\left\{{}\begin{matrix}a\ge0\\a\ne9\end{matrix}\right.\)
`b)`\(B=\dfrac{2\sqrt{a}}{\sqrt{a}+3}-\dfrac{\sqrt{a}}{3-\sqrt{a}}-\dfrac{3a+3}{a-9}\)
\(B=\dfrac{2\sqrt{a}\left(\sqrt{a}-3\right)+\sqrt{a}\left(\sqrt{a}+3\right)-3a-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(B=\dfrac{2a-6\sqrt{a}+a+3\sqrt{a}-3a-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(B=\dfrac{-3\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(B=-\dfrac{3}{\sqrt{a}-3}\)
`c)`\(P=\dfrac{A}{B}\)
\(P=\dfrac{\sqrt{a}+1}{\sqrt{a}-3}:-\dfrac{3}{\sqrt{a}-3}\)
\(P=-\dfrac{\sqrt{a}+1}{\sqrt{a}-3}.\dfrac{\sqrt{a}-3}{3}\)
\(P=-\dfrac{\sqrt{a}+1}{3}\)
`@`\(P>\dfrac{1}{3}\)
\(\Leftrightarrow-\dfrac{\sqrt{a}+1}{3}>\dfrac{1}{3}\)
\(\Leftrightarrow\sqrt{a}+1< -1\)
\(\Leftrightarrow\sqrt{a}< -2\) ( vô lý )
`d)`\(Q=\dfrac{5P\sqrt{a}}{3}\)
\(Q=-\dfrac{5\dfrac{\sqrt{a}+1}{3}.\sqrt{a}}{3}\)
\(Q=-\dfrac{5a+5\sqrt{a}}{9}\)
\(\Leftrightarrow5a+5\sqrt{a}+9Q=0\)
`@`TH1: Nếu \(Q=0\) \(\Rightarrow a=0\) `(tm)`
`@`TH2: Nếu \(Q\ne0\)
\(\Delta=5^2-4.5.9=-155< 0\) `=>` vô lý
Vậy \(a=0\) thì `Q` nhận giá trị nguyên