A=\(\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{10x-25}{x^2+5x}+\frac{x}{5-x}\)
a, Rút gọn
b,Tìm x để A=2014
c,Tìm x ∈ z để A ∈ z
P= \(\left(\frac{1}{x-2}-\frac{2}{x^2-4}\right):\frac{2x-3}{x^2-4}\)
a tìm ĐKXĐ và Rút gọn
b với x>\(\frac{3}{2}\) tìm GTNN của M=x*P
1. a)Cho a-b+c-d=0. Chứng minh rằng: a3 - b3 + c3 - d3=3(c-d)(cd-ab)
b) cho a+d=b-c. Chứng minh rằng: a3 - b3 + c3 + d3=3(a-b)(ab+dc)
2. a)Cho \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\)=0. Tính S= \(\frac{yz}{x^2}-\frac{xy}{z^2}-\frac{zx}{y^2}\)
b) Cho \(\frac{1}{x}+\frac{2}{y}+\frac{3}{z}\)=0. Tính S= \(\frac{9xy}{2z^2}+\frac{yz}{6x^2}+\frac{4zx}{3y^2}\)
B1:
a)-3ab(a2-3b)
b)3x(5x2-2x-1)
c)(22-2xy+3)(-xy)
d)\(\frac{1}{2}\)x2y(2x3-\(\frac{2}{5}\)xy2-1)
e)\(\frac{2}{7}\)x(1,4x-3,5y)
f)\(\frac{1}{2}\)xy(\(\frac{2}{3}\)x2-\(\frac{3}{4}\)xy+\(\frac{4}{5}\)y2)
g)(1+2x-x2)5x
B2:
\(\frac{1}{4}\)x2-(\(\frac{1}{2}\)x-4)\(\frac{1}{2}\)x=-14
B3: rút gọn rồi tính giá trị biểu thức
a)3(2a-1)+5(3-a)với a=\(\frac{3}{2}\)
b)25x-4(3x-1)+7(5-2x)với x=2,1
c)4a-2(10a-1)+8a-2 với a=-0,2
d)12(2-3b)+35b-9(b+1)với b=\(\frac{1}{2}\)
I. Trắc nghiệm
Câu 1 : Để biểu thức x^3 + 6x^2 + 12x + m là lập phương cùa một tổng thì giá trị của m là :
A. 8 B. 4 C. 6 D. 16
Câu 2 : x^2 - 2x + 9 = ( x - 3 )^2
A. Đúng B. Sai
Câu 3 : ( 1/2x - 3 )^3 = 1/8x^3 - 9/4x^2 + 27/2x - 27
A. Đúng B. Sai
Câu 4 : Tính giá trị của các biểu thức A = 8x^3 - 12x^2y + 6xy^2 - y^3 tại x = 1/2, y = 1
A. 1/4 B. 27/8 C. -3/4 D. 0
Câu 5 : Rút gọn biểu thức B = ( x + 2 )^3 - ( x - 2 )^3 - 12x^2 ta thu đc kết quả là :
A. 16 B. 2x^3 + 24x C. x^3 + 24x^2 + 16 D. 0
Câu 6 : x^2 - 1 =
A. ( x -1 ) ( x + 1 ) B. ( x + 1 ) ( x + 1 ) C. x^2 + 2x + 1 D. x^2 - 2x - 1
Câu 7 : x^2 - 10xy + 25y^2 = ( 5 - y )^2
A. Đúng B. Sai
Câu 8 : Tính giá trị cuả các biểu thức : A = 4x^2 - 6xy + 9y^2 tại x = 1/2, y = 2/3
A. 4 B. 1/4 C. -1 D. 1
Câu 9 : Rút gọn biểu thức A = ( x - 2 )^2 - ( x - 3 )^2 + ( x + 4 )^2 thu đc kết quả :
A. x^2 + 10x + 11 B. 9x^2 - 1 C. 3x^2 - 9 D. x^2 - 9
Câu 10 : Giá trị nhỏ nhất của biểu thức A = 9x^2 - 6x + 4 đạt đc khi x bằng
A. 2 B. 3 C. 1/3 D.
Giúp mk vs ạ mk đang cần gấp
1) cho các số a,b,c dương thỏa mãn \(a^3+b^3+c^3=3abc\). CMRa=b=c
2) cho x,y,z thỏa mãn xyz=1 và \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). Tính A=\(x^{2018}+2019^y-z^x\)
3) Cho \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}.CMR\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
3. A) Cho x, y, z khác 0 thỏa mãn: (x-y-z)2= x2+y2+z2
Chứng minh rằng: \(\frac{1}{x^3}-\frac{1}{y^3}-\frac{1}{z^3}\) = \(\frac{3}{xyz}\)
b) Cho x,y,z khác 0 thỏa mãn: (4x-3y+2z)2= 16x2+9y2+4z2.
Chứng minh rằng: \(\frac{1}{64x^3}-\frac{1}{27y^3}+\frac{1}{8z^3}\)=\(-\frac{1}{8xyz}\)
4. a)CMR: (A+B+C)3 - A3-B3-C3 = 3(A+B)(B+C)(C+A)
b) Cho P = (x+y+z)3-x3-y3-z3.
CMR:
-Nếu P =0 Thì(x11+y11)(y+z7)(z2019+x2019)=0
-Nếu x,y, z là các số nguyên cùng tính chẵn lẻ thì P chia hết cho 8, cho 24
M = \(\frac{x^2}{x^2-2x+1}: \left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
a,Rút gọn
b,Tìm x để B<1
c,Tìm min M khi x>1
1, Cho a + b = 2
Tính a2 + b2 + 6ab
2, Tìm a, b sao cho a2 + b2 - ab - a - b + 1 = 0
3, Cho x + y = x2 + y2 = x3 + y3
Tìm x, y
4, Cho ab + bc + ca = 1
Rút gọn: P = \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}-\frac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
5, Cho P = x3 + y3 + 3xy là số nguyên tố, x và y \(\in N\). Tìm x,y