Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đức Hiếu

Cho biết:

\(A^2-B^2=\left(A+B\right).\left(A-B\right)\)

\(A^3-B^3=\left(A-B\right).\left(A^2+AB+B^2\right)\)

\(A^4-B^4=\left(A-B\right).\left(A^3+A^2.B+A.B^2+B^3\right)\)

Từ đó hãy cho biết:

\(A^5-B^5=?\)

\(A^6-B^6=?\)

\(A^{10}-A^{10}=?\)

Rút ra tổng quát:

\(A^n-B^n=?\)

Good luck!!!

Mới vô
2 tháng 6 2017 lúc 7:42

\(A^5-B^5=\left(A-B\right)\cdot\left(A^4+A^3\cdot B+A^2\cdot B^2+A\cdot B^3+B^4\right)\\ A^6-B^6=\left(A-B\right)\cdot\left(A^5+A^4\cdot B+A^3\cdot B^2+A^2\cdot B^3+A\cdot B^4+B^5\right)\\ A^{10}-B^{10}=\left(A-B\right)\cdot\left(A^9+A^8\cdot B+A^7\cdot B^2+A^6\cdot B^3+A^5\cdot B^4+A^4\cdot B^5+A^3\cdot B^6+A^2\cdot B^7+A\cdot B^8+B^9\right)\\ A^n-B^n=\left(A-B\right)\cdot\left(A^{n-1}+A^{n-2}\cdot B+A^{n-3}\cdot B^2+...+A^2\cdot B^{n-3}+A\cdot B^{n-2}+B^{n-1}\right)\)

Đức Hiếu
2 tháng 6 2017 lúc 7:34
Thảo Đinh Thị Phương
2 tháng 6 2017 lúc 8:01
A5-B5= (A-B)(A4+A3B+A2B2+AB3+B4) A6-B6=(A-B ) (A5+A4B+A3B2+A2B3+AB4+B5) A10-B10=(A-B)(A9+A8B+A7B2+A6B3+A5B4+A4B5+A3B6+A2+B7+A+B8+B9) an – bn = (a – b) (a n-1 + a n-2 b + a n-3 b2 + a n-4 b3 +……… + b n-1) =))) không biết đúng hay không cơ mà nếu đúng tick cho mị nhé :"> luv
le thien hien vinh
7 tháng 6 2017 lúc 11:43

hihaÔn tập cuối năm phần số học


Các câu hỏi tương tự
My Phạm
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
Huyền Anh
Xem chi tiết
Quách Trần Gia Lạc
Xem chi tiết
Lê Thu Trang
Xem chi tiết
noname
Xem chi tiết
Wang Junkai
Xem chi tiết
Nguyen Thang
Xem chi tiết
Minh Hoàng Nguyễn
Xem chi tiết