Lời giải:
Đặt \(\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=k\Rightarrow \left\{\begin{matrix}
x=2018k\\
y=2019k\\
z=2020k\end{matrix}\right.\)
Khi đó:
\((x-z)^3=(2018k-2020k)^3=(-2k)^3=-8k^3\)
Và:
\(8(x-y)^2(y-z)=8(2018k-2019k)^2(2019k-2020k)\)
\(=8(-k)^2(-k)=8k^2(-k)=-8k^3\)
Do đó: \((x-z)^3=8(x-y)^2(y-z)\)