Áp dung BĐT AM-GM ta có
\(P=\dfrac{x^2}{x^4+yz}+\dfrac{y^2}{y^4+xz}+\dfrac{z^2}{z^4+xy}\)
\(\le\dfrac{x^2}{2x^2\sqrt{yz}}+\dfrac{y^2}{2y^2\sqrt{xz}}+\dfrac{z^2}{2z^2\sqrt{xy}}\)
\(=\dfrac{1}{2\sqrt{yz}}+\dfrac{1}{2\sqrt{xz}}+\dfrac{1}{2\sqrt{xy}}\)
\(\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{2}\cdot\dfrac{xy+yz+xz}{xyz}\)
\(\le\dfrac{1}{2}\cdot\dfrac{x^2+y^2+z^2}{xyz}\le\dfrac{1}{2}\cdot\dfrac{3xyz}{xyz}=\dfrac{3}{2}\)
Dấu "=" <=> \(x=y=z=1\)