Ta có: \(a^2+b^2+c^2+abc=4\)
\(\Rightarrow a^2+b^2+c^2\le4\)
Ta lại có: \(4=a^2+b^2+c^2+abc=a^2+b^2+c^2+\sqrt{a^2+b^2+c^2}\)
Theo BĐT Cô-si ta có: \(\frac{\left(a^2+b^2+c^2\right)^3}{27}\ge a^2b^2c^2\)
\(\Rightarrow4\le a^2+b^2+c^2+\sqrt{\frac{\left(a^2+b^2+c^2\right)}{27}}\)
Hay: \(\sqrt{\frac{S^3}{27}}\ge4-S\)
\(\Leftrightarrow3\le S\le4\)
\(\Rightarrow Min_S=3\)
\(\Rightarrow Max_S=4\)