\(a^2+b^2+c^2=4-abc\le4\)
\(S_{max}=4\) khi 1 trong 3 số bằng 0
\(4=abc+a^2+b^2+c^2\ge abc+3\sqrt[3]{\left(abc\right)^2}\)
Đặt \(\sqrt[3]{abc}=x>0\Rightarrow x^3+3x^2-4\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)^2\le0\Rightarrow x\le1\)
\(\Rightarrow abc\le1\Rightarrow S=4-abc\ge3\)
Dấu "=" xảy ra khi \(a=b=c=1\)