Ta có: \(ab+bc+ac\le a^2+b^2+c^2\forall a,b,c\)
\(\Rightarrow12\le a^2+b^2+c^2\forall a,b,c\)
Đặt \(T=a^4+b^4+c^4\)\(=\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left[\left(1^2\right)^2+\left(1^2\right)^2+\left(1^2\right)^2\right]\left[\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\right]\)
\(\ge\left(a^2+b^2+c^2\right)^2=12^2=144\)
\(\Leftrightarrow3T\ge144\Leftrightarrow T\ge48\)
Đẳng thức xảy ra khi \(a=b=c=\pm2\)
Vậy với \(a=b=c=\pm2\) thì \(T_{Min}=48\)