Cho 2 số thực a, b thỏa mãn ab ≠ 0, a ≠ 1, b ≠ 1 và a + b = 1. Tính giá trị của biểu thức
\(P=\dfrac{a}{b^3-1}-\dfrac{b}{a^3-1}+\dfrac{2\left(a-b\right)}{a^2b^2+3}\)
Cho 2 số thực a, b thỏa mãn ab ≠ 0, a ≠ 1, b ≠ 1 và a + b = 1. Tính giá trị của biểu thức
\(P=\dfrac{a}{b^3-1}-\dfrac{b}{a^3-1}+\dfrac{2\left(a-b\right)}{a^2b^2+3}\)
Help me ! Mình chỉ còn 3 ngày nữa thôi
Cho a ; b ;c là các số thực dương thỏa mãn a2 + b2 + c2 = \(\frac{3}{4}\) . Tìm giá trị nhỏ nhất của biểu thức :
P = \(\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\left(1-\frac{1}{c}\right)\)
1 ) Cho a , b , c là các số dương thỏa mãn : \(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)=8\)
Tính giá trị của biểu thức \(P=\frac{a^3+b^3+c^3}{abc}\)
2 . Cho a , b , c là 3 số dương thỏa mãn : \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) . Tìm giá trị lớn nhất của biểu thức :
\(Q=abc\)
1,cho a,b là các số thực thỏa mãn:\(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\left(a\ne0\right)\)
Tìm giá trị lớn nhất của biểu thức P=ab
Cho ba số a,b,c là 3 số thực dương thỏa mãn (ab)3 + (bc)3 + (ca)3 = 3 (abc). Tính giá trị biểu thức
\(\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)\)
Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1
Chứng minh rằng : \(P=\dfrac{1}{\left(a+1\right)^2}+\dfrac{1}{\left(b+1\right)^2}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge1\)
1,cho các sô thực a,b,c thỏa mãn abc(a+b+c)=1. Tính giá trị của biểu thức Q=\(\frac{c^2\left(a+b\right)^2\left(1+a^2b^2\right)}{\left(1+b^2c^2\right)\left(1+c^2a^2\right)}\)
Các số a, b, c thỏa mãn: \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\)
Tìm giá trị nhỏ nhất của biểu thức : \(M=ab+bc+ca-\left(a+b+c\right)+1\)