Cho a, b, c, d là 4 số khác 0 thỏa mãn \(b^2\) = ac; \(c^2\) = bd và \(b^3+c^3+d^3\ne0\)
Chứng minh rằng: \(\dfrac{a}{d}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
Cho a;b;c khác 0
Thỏa mãn ab/a+b = bc/b+c = ac/a+c
Tính P= ab^2+ bc^2+ ac^2/ a^3+ b^3+ c^3
cho các số có hai chữ số ab bc thỏa mãn ab/bc=b/c chứng tỏ a^2+b^2/b^2+c^2=a/c
Cho ba số a,b,c đôi một khác nhau và khác 0 thỏa mãn : 1/c + 1/a-b = 1/a - 1/b-c. CMR: b = a+c
Cho b^2=ac; c^2=bd với b,c,d khác 0; b+c khác d, b^3+c^3 khác d^3Chứng mỉnh rằng a/b=b/c=c/d và 3a^3-4b^3+5c^3/3b^3-4c^3+5d^3=a/d
giúp ;-;
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)và b, d khác 0. CMR \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
Cho biết a//b//c và góc A1=80° , góc D=70°. Tính các góc A2 , B1 , B2 , C1 , E2 , E1 , F1.Cho biết a//b//c và góc A1=80° , góc D=70°. Tính các góc A2 , B1 , B2 , C1 , E2 , E1 , F1.
B1 Cho a/b/=c/dCMR
a2+2017b2/c2+2017d2=ab/cd
B2 Cho b2=ac
a/c=a2+2017b2/b2+2017c2
cho a,b,c,x,y,z là các số thực khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\). CMR: \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}\)