\(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Rút gọn B
b) x bằng mấy để \(\left|B\right|=B\)
Tìm điều kiện xác định và rút gọn các biểu thức sau :
a/ \(A=\left(\dfrac{\sqrt{3}}{x^2+x\sqrt{3}+3}+\dfrac{3}{x^3-\sqrt{27}}\right).\left(\dfrac{x}{\sqrt{3}}+\dfrac{\sqrt{3}}{x}+1\right)\)
b/ \(B=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)
c/ \(C=\left(\dfrac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\)
d/ \(\left[\dfrac{1}{x-1}+\dfrac{x^2+1-2x}{\left(x-1\right)^2+3x}-\dfrac{1+4x-2x^2}{x^3-1}\right]:\dfrac{2}{x^2+1}\)
\(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)
a) Rút gọn A
b)Cho \(a=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)và \(b=\sqrt{24}\). Tính A
cho các số dương a,b,c và a',b',c'. chứng minh rằng nếu:
\(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\) thì \(\dfrac{a}{a'}+\dfrac{b}{b'}+\dfrac{c}{c'}\)
bài 2 chứng minh bất đẳng thức
c) a+b+\(\dfrac{1}{2}\) >_ \(\sqrt{a}+\sqrt{b}\)
e)\(\sqrt{\dfrac{a+b}{2}}\)>_\(\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
Cho a,b > 0 và \(a^2+b^2\le2\) . Tìm max \(A=a\sqrt{3b\left(a+2b\right)}+b\sqrt{3a\left(b+2a\right)}\)
cho a,b,c > 0 thỏa mãn a + b + c = 6. Chứng minh:
\(\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{c^3+1}}+\dfrac{c}{\sqrt{a^3+1}}\ge2\)
Cho biểu thức: B=\(\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\dfrac{ }{ }\)
a) Tìm điều kiện xác định của B ?
b) Tìm x để B = 0; B = \(\dfrac{1}{4}\)
Giải giúp với ạ!! Cảm ơn trước.
a, Cho S=\(\dfrac{1}{\sqrt{1.1998}}+\dfrac{1}{\sqrt{2.1997}}+...+\dfrac{1}{\sqrt{k\left(1998-k+1\right)}}+...+\dfrac{1}{\sqrt{198-1}}\). Hãy so sánh S và 2\(\dfrac{1998}{1999}\)
b, Cho A=\(\dfrac{1}{\sqrt{1.1999}}+\dfrac{1}{\sqrt{2.1998}}+\dfrac{1}{\sqrt{3.1997}}+...+\dfrac{1}{\sqrt{199-1}}\). Hãy so sánh A với 1,999