Chứng minh bất đẳng thức Cô-si
Bất đẳng thức Cô-si cho hai số là:
\(\dfrac{a+b}{2}\) ≥\(\sqrt{ab}\) , a≥0 , b≥0
Giúp với mai mink thi rồi
cho a,b,c > 0 thỏa mãn a + b + c = 6. Chứng minh:
\(\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{c^3+1}}+\dfrac{c}{\sqrt{a^3+1}}\ge2\)
Tìm điều kiện xác định và rút gọn các biểu thức sau :
a/ \(A=\left(\dfrac{\sqrt{3}}{x^2+x\sqrt{3}+3}+\dfrac{3}{x^3-\sqrt{27}}\right).\left(\dfrac{x}{\sqrt{3}}+\dfrac{\sqrt{3}}{x}+1\right)\)
b/ \(B=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)
c/ \(C=\left(\dfrac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\)
d/ \(\left[\dfrac{1}{x-1}+\dfrac{x^2+1-2x}{\left(x-1\right)^2+3x}-\dfrac{1+4x-2x^2}{x^3-1}\right]:\dfrac{2}{x^2+1}\)
Cho B = \(\left(\dfrac{a-b}{\sqrt{a^2-b^2}-a+b}+\dfrac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}\right).\dfrac{a^2+3b^2}{\sqrt{a^2-b^2}}\)
a) Tìm điều kiện xác định và rút gọn B
b) Cho a - b = 1. Tìm min B
Bài 1: Cho a,b,c > 0. Chứng minh tất cả các bất đẳng thức sau
a. (2a+2b)\(\left(\dfrac{1}{4a}+\dfrac{1}{4b}\right)\)≥ 2
b. a+b+c ≥ \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Bài 2: Cho x; y thỏa mãn \(x^2+y^2-4x+3=0\). Đặt M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \(P=x^2+y^2\).
Tính giá trị M+m
\(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Rút gọn B
b) x bằng mấy để \(\left|B\right|=B\)
cho các số dương a,b,c và a',b',c'. chứng minh rằng nếu:
\(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\) thì \(\dfrac{a}{a'}+\dfrac{b}{b'}+\dfrac{c}{c'}\)
a, Cho S=\(\dfrac{1}{\sqrt{1.1998}}+\dfrac{1}{\sqrt{2.1997}}+...+\dfrac{1}{\sqrt{k\left(1998-k+1\right)}}+...+\dfrac{1}{\sqrt{198-1}}\). Hãy so sánh S và 2\(\dfrac{1998}{1999}\)
b, Cho A=\(\dfrac{1}{\sqrt{1.1999}}+\dfrac{1}{\sqrt{2.1998}}+\dfrac{1}{\sqrt{3.1997}}+...+\dfrac{1}{\sqrt{199-1}}\). Hãy so sánh A với 1,999
Cho a+b+c=0 và a,b,c\(\ne0\) . Chứng minh rằng:
A=\(\sqrt{\dfrac{6a^2}{a^2-b^2-c^2}+\dfrac{6b^2}{b^2-c^2-a^2}+\dfrac{6c^2}{c^2-a^2-b^2}}\) là số nguyên