a: \(A\left(109\right)=x^{99}-x^{98}\cdot x+x^{98}-x^{97}\cdot x+...+x-x\)
\(=x^{99}-x^{99}+x^{98}-x^{98}+...+0\)
=0
b: x=9 nên x+1=10
\(B\left(x\right)=x^{49}-x^{48}\left(x+1\right)+x^{47}\left(x+1\right)-...+x\left(x+1\right)-1\)
\(=x^{49}-x^{49}-x^{48}+x^{48}+...+x^2+x-1\)
=x-1=8
c: x=999 nên x+1=1000
\(C\left(x\right)=x^{999}-x^{998}\left(x+1\right)+x^{997}\left(x+1\right)-...+x\left(x+1\right)-1\)
\(=x^{999}-x^{999}-x^{998}+x^{998}+...+x^2+x-1\)
=x-1=998