Bài 1 : NĂNG KHIẾU 2016-2017
A) Tính S=a+b biết a;b>0, a \(\ne\)b và \(\left(\dfrac{a\left(a-4b\right)+b\left(b+2a\right)}{a+b}\right):\left[\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\right]=2016\)
B) Giải: \(x\sqrt{x+5}=2x^2-5x\left(1\right)và\left\{{}\begin{matrix}\left(\sqrt{y}+x-3\right)\left(y+\sqrt{x}\right)=0\\x^2+y=5\end{matrix}\right.\)
Câu 1: Cho bt: A= \(\left(\dfrac{1}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{1}{\sqrt{1-x^2}}+1\right)\)
a) Tìm x để A có nghĩa
b) Rút gọn
c) Tính A với x =\(\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
Câu 2: Cho bt B= \(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\left(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\)
a) Rút gọn
b) CM B\(\ge\)0
c) So sánh B với \(\sqrt{B}\)
Cho biểu thức: \(B=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn B
b) Chứng minh: \(B\ge0\)
c) So sánh B với \(\sqrt{B}\)
Chứng minh (với những giá trị của biến làm cho biểu thức có nghĩa)
a) \(\dfrac{\left(3\sqrt{xy}-6y-2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}+\dfrac{2\sqrt{xy}}{x-y}\right)=\sqrt{x}+\sqrt{y}\)
So sánh:
\(A=\sqrt{\dfrac{37}{4}-\sqrt{49+12\sqrt{5}}}\) với \(B=\sqrt{5}-\dfrac{3}{2}\)
Giúp với mình sắp cần rồi
Bài 1. Tìm x, y, z biết: \(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\) (trong đó, a + b + c = 3)
Bài 2.
a) Chứng minh rằng: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
b/ Cho S = \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\). Chứng minh rằng: 18<S<19
Cho a = xy + \(\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) và b = x\(\sqrt{1+y^2}\)+ y\(\sqrt{1+x^2}\). XY > 0. Tính b theo a
Câu 1: Tính giá trị biểu thức
A=\(\left(\sqrt{x}-2\right)^2-\left(\sqrt{x}+2\right)^2\) tại x=\(\sqrt{5}-2\)
B=\(\left(2\sqrt{x}+\sqrt{y}\right)\left(2\sqrt{x}-\sqrt{y}\right)\) với (x≥0,y≥0) tại x=\(\sqrt{2},y=\sqrt{2}-1\)
Câu 2: Rút gọn
A=\(\sqrt{81a}-\sqrt{49a}+\sqrt{121a}\left(a\ge0\right)\)tại a=3+2\(\sqrt{2};B=\sqrt{9b}-\frac{1}{3}\sqrt{54b}+\frac{1}{5}\sqrt{105b}\)(b≥0)
Rút gọn biểu thức
\(a.\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(b.\sqrt{41-\sqrt{160}}+\sqrt{49+\sqrt{90}}\)
\(c.\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\left(x\ge0;y\ge0;x\ne y\right)\)
\(d.\dfrac{y+1-2\sqrt{y}}{\sqrt{y}-1}\left(y\ge0;y\ne1\right)\)
\(e.\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+2-2\sqrt{x+1}}\)
Bài 2: Cho: \(S=x\sqrt{1+y^2}+y\sqrt{1+x^2}\). Hãy tính giá trị của S biết \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=a\)