Đặt B = \(10^n+10^{n-1}+.........+10+1\)
=> 10B = \(10^{n+1}+10^n+........+10^2+10\)
=> 10B - B = \(10^{n+1}-1\)
Ta có 9A=9B.(\(10^{n+1}+5\)) + 9 = (\(10^{n+1}-1\)).(\(10^{n+1}+5\)) +9
9A = (\(\left(10^{n+1}\right)^2+5.10^{n+1}-10^{n+1}-5+9\) = \(\left(10^{n+1}\right)^2+4.10^{n+1}+4\) = \(\left(10^{n+1}+2\right)^2\)
=> A = \(\left(\dfrac{10^{n+1}+2}{3}\right)^2\)
Vì ( \(10^{n+1}+2\)) chia hết cho 3 nên \(\left(\dfrac{10^{n+1}+2}{3}\right)^2\)là số chính phương
=> A là số chính phương