a) Sửa đề: \(A=\frac{a^2+4a+4}{a^2+2a-4a-8}\)
ĐKXĐ: \(a\ne-2;a\ne4\)
Ta có: \(A=\frac{a^2+4a+4}{a^2+2a-4a-8}\)
\(=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a-4\right)}=\frac{a+2}{a-4}\)
b) Để A là số nguyên thì \(a+2⋮a-4\)
\(\Leftrightarrow a-4+6⋮a-4\)
\(\Leftrightarrow6⋮a-4\)
\(\Leftrightarrow a-4\inƯ\left(6\right)\)
\(\Leftrightarrow a-4\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(\Leftrightarrow a\in\left\{5;3;6;2;7;1;10;-2\right\}\)
mà \(a\ne-2;a\ne4\)
nên \(a\in\left\{5;3;6;2;7;1;10\right\}\)
Vậy: \(a\in\left\{5;3;6;2;7;1;10\right\}\)