2A=\(\frac{2}{1\cdot2\cdot3}\)+\(\frac{2}{2\cdot3\cdot4}\)+\(\frac{2}{3\cdot4\cdot5}\)+...+\(\frac{2}{2014\cdot2015\cdot2016}\)
2A=\(\frac{1}{1\cdot2}\)-\(\frac{1}{2\cdot3}\)+\(\frac{1}{2\cdot3}\)-\(\frac{1}{3\cdot4}\)+\(\frac{1}{3\cdot4}\)-\(\frac{1}{4\cdot5}\)+...+\(\frac{1}{2014\cdot2015}\)-\(\frac{1}{2015\cdot2016}\)
2A=\(\frac{1}{2}\)-\(\frac{1}{2015\cdot2016}\)
A=(\(\frac{1}{2}\)-\(\frac{1}{2015\cdot2016}\)):2
A=\(\frac{1}{2}\):2-\(\frac{1}{2015\cdot2016}\):2
A=\(\frac{1}{4}\)-\(\frac{1}{2015\cdot2016\cdot2}\)<\(\frac{1}{4}\)
Vậy A<\(\frac{1}{4}\)