Ta có:
A = \(\frac{2}{60.63}+\frac{2}{63.66}+...+\frac{2}{117.120}+\frac{2}{2016}\)
\(=2.\left(\frac{1}{60.63}+\frac{1}{63.66}+...+\frac{1}{117.120}\right)+\frac{2}{2016}\)
\(=2.\frac{1}{3}\left(\frac{3}{60.63}+\frac{3}{63.66}+...+\frac{3}{117.120}\right)+\frac{2}{2016}\)
\(=\frac{2}{3}.\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}\right)+\frac{2}{2016}\)
\(=\frac{2}{3}.\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{2}{2016}\)
\(=\frac{2}{3}.\frac{1}{120}+\frac{2}{2016}\)
\(=\frac{1}{180}+\frac{2}{2016}\)
B = \(\frac{5}{40.44}+\frac{5}{44.48}+...+\frac{5}{76.80}+\frac{5}{2016}\)
\(=\frac{5}{4}.\left(\frac{4}{40.44}+\frac{4}{44.48}+...+\frac{4}{76.80}\right)+\frac{5}{2016}\)
\(=\frac{5}{4}.\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+...+\frac{1}{76}-\frac{1}{80}\right)+\frac{5}{2016}\)
\(=\frac{5}{4}.\left(\frac{1}{40}-\frac{1}{80}\right)+\frac{5}{2016}\)
\(=\frac{5}{4}.\frac{1}{80}+\frac{5}{2016}\)
\(=\frac{1}{64}+\frac{5}{2016}\)
Vì \(\frac{1}{64}>\frac{1}{180}\) và \(\frac{5}{2016}>\frac{2}{2016}\) nên B > A
Vậy B > A