\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}}{\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)}=1:\dfrac{1}{4}=4\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}}{\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)}=1:\dfrac{1}{4}=4\)
cho A =\(\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+\dfrac{1}{2^8}+...+\dfrac{1}{2^{100}}\)
Chứng minh rằng A<\(\dfrac{1}{3}\)
Tính giá trị biểu thức A , biết rằng A = M : N
Mà M = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
N = \(\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
Tính :
1, A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+........+\dfrac{1}{100}\)
2, B = \(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.........+\dfrac{99}{100}\)
So sánh:
a) A = \(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\) với 1
b) B = \(\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\) với \(\dfrac{1}{2}\)
c) C = \(\dfrac{1}{4^1}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{999}}+\dfrac{1}{4^{1000}}\) với \(\dfrac{1}{3}\)
Cần gấp ạ ^^ Cảm ơn trước ^^
8) \(A=\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
9) \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{2014}}+\dfrac{1}{3^{2015}}\)
10) \(P=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2005}}{\dfrac{2004}{1}+\dfrac{2003}{2}+\dfrac{2002}{3}+...+\dfrac{1}{2004}}\)
\(\text{Cho A=}\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^4}+\dfrac{1}{2^8}+...+\dfrac{1}{2^{100}};\)
Hãy so sánh A với \(\dfrac{1}{3}\)
a,\(-4\dfrac{1}{3}.\left(\dfrac{1}{2}-\dfrac{1}{6}\right)< hoac=x< hoac=\dfrac{-2}{5}.\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)\)
b, \(-4\dfrac{2}{5}.2\dfrac{4}{3}< hoac=x< hoac=-2\dfrac{3}{5}:1\dfrac{6}{15}\)
Chứng minh:
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}< \dfrac{1}{4}\)
\(B=\dfrac{36}{1.3.5}+\dfrac{36}{5.7.9}+\dfrac{36}{9.11.13}+...+\dfrac{36}{25.27.29}< 3\)
\(C=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\in< 1\left(n\in N,n\ge2\right)\)
\(D=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< 4\left(n\in N,n\ge2\right)\)
\(E=\dfrac{2!}{3!}+\dfrac{2!}{4!}+\dfrac{2!}{5!}+...+\dfrac{2!}{n!}< 1\left(n\in N,n\ge3\right)\)
2. thực hiện phép tính
a. \(\dfrac{3}{8}.72\dfrac{1}{5}-51\dfrac{1}{5}.\dfrac{3}{8}\)
b.\(25.\left(\dfrac{-1}{5}^{ }\right)^3+\dfrac{1}{5}-2.\left(\dfrac{-1}{2}\right)^2-\dfrac{1}{2}\)
c.\(35\dfrac{1}{6}.\dfrac{-4}{5}-45\dfrac{1}{6}.\dfrac{-1}{5}\)