Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trương Quỳnh Gia Kim

Cho a,b,c,d,e thuộc N thõa mãn \(a^b=b^e=c^d=d^e=e^a\)

CMR: a=b=c=d=e

Lightning Farron
19 tháng 8 2016 lúc 15:49

Không mất tính tổng quát, giả sử \(a\ge b\)

Vì \(a^b=b^c\Rightarrow b\le c\)

Vì \(b^c=c^d\Rightarrow c\ge d\)

Vì \(c^d=d^e\Rightarrow d\le e\)

Vì \(d^e=e^a\Rightarrow e\ge a\)

Vì \(e^a=a^b\Rightarrow a\le b\)

Suy ra \(a=b\Rightarrow a=b=c=d=e\)

Đpcm

Lightning Farron
19 tháng 8 2016 lúc 15:56

+Nếu một trong năm số a,b,c,d,e=1 

=>a=b=c=d=e=1

+Không mất tính tổng quát giả sử a>1.Từ ab=bc=>b>1

Tương tự như vậy c,d,e>1. Như vậy tất cả các hàm mũ mà a,b,c,d,e là cơ số thì đều là hàm tăng.

Không mất tính tổng quát giả sử \(a\le b\)

Từ \(a^b=b^c\Rightarrow\frac{a^b}{b^b}=\frac{b^c}{b^b}\Rightarrow\left(\frac{a}{b}\right)^b=b^{c-b}\)

Do \(\frac{a}{b}\le1\Rightarrow b^{c-b}\le1=b^0\Rightarrow c-b\le0\Rightarrow c\le b\)

Tương tự như vậy với các đẳng thức còn lại 

\(\begin{cases}c\le b\\b^c=c^d\end{cases}\)\(\Rightarrow\begin{cases}\frac{b}{c}\ge1\\\left(\frac{b}{c}\right)^c=c^{d-c}\end{cases}\Rightarrow c\le d\)

\(\begin{cases}c\le d\\c^d=d^e\end{cases}\Rightarrow...\Rightarrow e\le d\)

\(\begin{cases}e\le d\\d^e=e^a\end{cases}\Rightarrow...\Rightarrow e\le a\)

\(\begin{cases}e\le a\\e^a=a^b\end{cases}\Rightarrow....\Rightarrow b\le a\)

Kết hợp \(a\le b\) và \(b\le a\) ta có a=b.Tiếp tục như vậy b=c, c=d, d=e

Vậy phải có a=b=c=d=e

 


Các câu hỏi tương tự
thanh ngọc
Xem chi tiết
Phạm Phương Anh
Xem chi tiết
Krystal Jung
Xem chi tiết
Công Tử
Xem chi tiết
Bánh Trôi
Xem chi tiết
trung nguyendinh
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
___Vương Tuấn Khải___
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết