Đặt \(k=\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)
Ta có: \(k=\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{a+b+c+d}{b+c+d+e}\) ( t/c dãy tỉ số bằng nhau )
\(\Rightarrow k^4=\left(\dfrac{a+b+c+d}{b+c+d+e}\right)^4\) (1)
\(k^4=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}=\dfrac{a}{e}\) (2)
Từ (1), (2) \(\Rightarrow\left(\dfrac{a+b+c+d}{b+c+d+e}\right)^4=\dfrac{a}{e}\left(đpcm\right)\)
Vậy...
Ta có :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)
=> \(\left(\dfrac{a}{b}\right)^4=\dfrac{a.b.c.d}{b.c.d.e}=\dfrac{a}{e}\) (1)
Mà :
\(\dfrac{a}{b}=\dfrac{a+b+c+d}{b+c+d+e}\left(TTCCDTSBN\right)\)
=> \(\left(\dfrac{a}{b}\right)^4=\left(\dfrac{a+b+c+d}{b+c+d+e}\right)^4\)(2)
=> từ (1) và (2)
=> \(\left(\dfrac{a+b+c+d}{b+c+d+e}\right)^4=\dfrac{a}{e}\left(đp.....\right)\)