Cho \(a,b,c,d\in N\) thỏa mãn \(a>b>c>d\) và \(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\).
Chứng minh \(ab+cd\) là hợp số
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b,, c, d là các số nguyên dương thỏa mãn b( a + c) = ac. Chứng minh rằng: a. b + 2( a + c) luôn là hợp số;
b. c + 2a luôn là hợp số.
cho 4 số thực dương a,b,c,d thỏa mãn a+b+c+d=4.CMR:
\(\frac{1}{ab}+\frac{1}{cd}\ge\frac{a^2+b^2+c^2+d^2}{2}\)
Cho a,b,c,d,A,B,C,D là các số nguyên dương và \(\dfrac{a}{A}=\dfrac{b}{B}=\dfrac{c}{C}=\dfrac{d}{D}\)
CMR \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
Giúp mình với các cao nhân
Cho a,b,c là các số thực thỏa mãn a+b+c+ab+ac+bc=6.
a,Tìm GTLN của P=abc
b,CMR \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{4}{c}+\dfrac{16}{d}\dfrac{>}{ }\dfrac{64}{a+b+c+d}\) với a,b,c,d là các số dương
cho các số nguyên a,b,c,d khác 0 thỏa mãn ab=cd
cm: \(a^{2014}+b^{2014}+c^{2014}+d^{2014}\) là hợp số