\(M\ge\frac{\left(1+1+1+1\right)^2}{3\left(a+b+c+d\right)}=\frac{16}{3\left(a+b+c+d\right)}\) ( bdt Cauchy dạng Engel)
Mặt khác, có \(\left(a+b+c+d\right)^2\le4\left(a^2+b^2+c^2+d^2\right)\le16\) ( bdt Bunykovski)
\(\Leftrightarrow a+b+c+d\le4\)
\(\Rightarrow M\ge\frac{16}{3\left(a+b+c+d\right)}\ge\frac{16}{12}=\frac{4}{3}\)
Dấu "=" : x =y =z = 1