Cho ba số a,b,c là 3 số thực dương thỏa mãn (ab)3 + (bc)3 + (ca)3 = 3 (abc). Tính giá trị biểu thức
\(\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)\)
Cho 3 số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) . Tìm giá trị nhỏ nhất của biểu thức:
\(Q=\frac{a+2017c}{a-c}+\frac{b+2017c}{b-c}\)
Chứng minh: \(a^3+b^3+c^3=3abc\) thì a+b+c=0 hoặc a=b=c. Áp dụng cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Tính giá trị của biểu thức: \(A=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Chứng minh: \(a^3+b^3+c^3=3abc\) thì a+b+c=0 hoặc a=b=c. Áp dụng cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Tính giá trị của biểu thức: \(A=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Help me ! Mình chỉ còn 3 ngày nữa thôi
Cho a ; b ;c là các số thực dương thỏa mãn a2 + b2 + c2 = \(\frac{3}{4}\) . Tìm giá trị nhỏ nhất của biểu thức :
P = \(\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\left(1-\frac{1}{c}\right)\)
Cho a,b,c là các số thực dương thỏa mãn \(a^2+b^2+c^2=1\). CMR
\(\frac{bc}{a^2+1}+\frac{ca}{b^2+1}+\frac{ab}{c^2+1}\le\frac{3}{4}\)
1 ) Cho a , b , c là các số dương thỏa mãn : \(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)=8\)
Tính giá trị của biểu thức \(P=\frac{a^3+b^3+c^3}{abc}\)
2 . Cho a , b , c là 3 số dương thỏa mãn : \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) . Tìm giá trị lớn nhất của biểu thức :
\(Q=abc\)
Cho a, b là các số thực dương thỏa mãn ab = 1. Tìm giá trị nhỏ nhất của biểu thức:
\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
Cho a,b,c là các số thực dương thỏa mãn a2 + b2 + c2 = 1. CM
\(\frac{bc}{a^2+1}+\frac{ca}{b^2+1}+\frac{ab}{c^2+1}\) ≤ \(\frac{3}{4}\)