a) \(a^2-b^2-c^2+2bc=4\left(p-b\right)\left(p-c\right)\Leftrightarrow a^2-b^2-c^2+2bc=4\left(\frac{a+b+c}{2}-b\right)\left(\frac{a+b+c}{2}-c\right)\)
\(\Leftrightarrow a^2-b^2-c^2+2bc=\left(a+c-b\right)\left(a+b-c\right)\Leftrightarrow a^2-\left(b-c\right)^2=\left[a-\left(b-c\right)\right]\left[a+\left(b-c\right)\right]\)
\(\Leftrightarrow a^2-\left(b-c\right)^2=a^2-\left(b-c\right)^2\) (luôn đúng)
Vậy đẳng thức đầu được chứng minh.
b) \(p^2+\left(p-a\right)^2+\left(p-b\right)^2+\left(p-c\right)^2=\left(\frac{a+b+c}{2}\right)^2+\left(\frac{b+c-a}{2}\right)^2+\left(\frac{a+c-b}{2}\right)^2+\left(\frac{a+b-c}{2}\right)^2\)
\(=\frac{4\left(a^2+b^2+c^2\right)+2\left(ab+bc+ac+bc-ac-ab+ac-bc-ab+ab-bc-ac\right)}{4}=\frac{4\left(a^2+b^2+c^2\right)}{4}=a^2+b^2+c^2\) = VP
Vậy ta có điều phải chứng minh.