Bạn có thể viết dưới dạng căn nhưng mà tớ không thích căn nên mới gọi nhá
Bạn có thể phóng to ra để xem ... tớ thử rồi ... nó vẫn nét
Bạn có thể viết dưới dạng căn nhưng mà tớ không thích căn nên mới gọi nhá
Bạn có thể phóng to ra để xem ... tớ thử rồi ... nó vẫn nét
Bài 1: cho \(a,b,c\ge0\) và a+b+c=1. Chứng minh rằng :
a,\(\left(1-a\right)\cdot\left(1-b\right)\cdot\left(1-c\right)\ge8\cdot a\cdot b\cdot c\)
b,\(16\cdot a\cdot b\cdot c\ge a+b\)
c,\(\frac{a}{1+a}+\frac{2\cdot b}{2+b}+\frac{3\cdot c}{3+c}\le\frac{6}{7}\)
Bài 2: cho a,b,c>0 và a.b.c=0 chứng minh rằng:
\(\frac{b\cdot c}{a^2\cdot b+a^2\cdot c}+\frac{a\cdot c}{b^2\cdot c+b^2\cdot a}+\frac{a\cdot b}{c^2\cdot a+c^2\cdot b}\ge\frac{3}{2}\)
cho a,b,c>0 chứng minh rằng:
1)
\(\frac{a^2}{b+c}\) +\(\frac{b^2}{c+a}+\) \(\frac{c^2}{a+c}\ge\frac{a+b+c}{2}\)
2. Cho a,b,c>0. Chứng minh: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
Cho \(a,b,c>0\) . CMR :
\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a,b,c>0. Chứng minh: \(\frac{a^2}{b+3c}+\frac{b^2}{c+3a}+\frac{c^2}{a+3b}\ge\frac{a+b+c}{4}\)
CMR với a,b,c > 0 thì \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
Cho \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)chứng minh \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
Cho a,b,c > 0
CMR : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}\ge\frac{a}{b}+\frac{b}{a}\)
Cho a, b, c > 0 chứng minh rằng:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}>=2\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)với \(p=\frac{a+b+c}{2}\)