<=> ( a/b+c + b/a+c + c/a+b )(a+b+c)=1(a+b+c)
<=> aa/b+c + a.(a+c)/b+c + bb/a+c + b.(a+c)/a+c + cc/a+b + c.(b+c)/b+c = 1(a+b+c)
<=> a^2/b+c + b^2/a+c + c^2/a+b + a+b+c = 1(a+b+c)
<=> a^2/b+c + b^2/a+c + a^2/a+b = a+b+c-a-b-c
<=> a^2/b+c + b^2/a+c + a^2/a+b = 0