Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
le vi dai

2. Cho a,b,c>0. Chứng minh: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

Đinh Tuấn Việt
6 tháng 7 2016 lúc 9:40

Đặt b + c = x ; c + a = y ; a + b = z  ; P = a/b+c + b/c+a + c/a+b
=> a = (y + z - x) / 2 ; b = (x + z - y) / 2 ; c = (x + y - z) / 2 
=> P = a/b+c + b/c+a + c/a+b = (y + z - x) / 2x + (x + z - y) / 2y + (x + y - z) / 2z 
= 1/2. (y/x + z/x - 1 + x/y + z/y - 1 + x/z + y/z - 1) = 1/2. (x/y + y/x + x/z + z/x + y/z + z/y - 3) 
Áp dụng BĐT a/b + b/a ≥ 0 hoặc Cô-si cũng được :
=> P ≥ 1/2. (2 + 2 + 2 - 3) = 3/2 (đpcm) 
Dấu = xảy ra <=> x = y = z <=> b+c = c+a = a+b <=> a = b = c 


Các câu hỏi tương tự
le vi dai
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Bùi Quang Vinh
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
bảo minh
Xem chi tiết
ANHOI
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
ANHOI
Xem chi tiết