Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Duy Lộc

Cho a, b, c > 0 chứng minh rằng:

\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}>=2\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)với \(p=\frac{a+b+c}{2}\)

Hà Ngân Hà
20 tháng 5 2016 lúc 12:59

\(\frac{1}{p-a}\)+\(\frac{1}{p-b}\)+\(\frac{1}{p-c}\)\(\ge\)2.(\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\))

 Ta có: 

\(\frac{1}{p-a}\)\(\frac{1}{\frac{a+b+c}{2}-a}\)=\(\frac{2}{b+c-a}\)

\(\frac{1}{p-b}\)=\(\frac{1}{\frac{a+b+c}{2}-b}\)=\(\frac{2}{a+c-b}\)

\(\frac{1}{p-c}\)=\(\frac{1}{\frac{a+b+c}{2}-c}\)=\(\frac{2}{a+b-c}\)

Vì a,b,c>0 ta có dụng BĐT sau:\(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\)\(\frac{4}{x+y}\)

 

\(\frac{2}{b+c-a}\)+\(\frac{2}{a+c-b}\)\(\ge\)\(\frac{2.4}{b+c-a+a+c-b}\)=\(\frac{8}{2c}\)=\(\frac{4}{c}\)

\(\frac{2}{b+c-a}\)+\(\frac{2}{a+b-c}\)\(\ge\)\(\frac{2.4}{b+c-a+a+b-c}\)=\(\frac{8}{2b}\)=\(\frac{4}{b}\)

\(\frac{2}{a+b-c}\)+\(\frac{2}{a+c-b}\)\(\ge\)\(\frac{2.4}{a+b-c+a+c-b}\)=\(\frac{8}{2a}\)=\(\frac{4}{a}\)

Cộng vế với vế của (1);(2) và(3) ta co:

\(\frac{4}{b+c-a}\)+\(\frac{4}{a+c-b}\)+\(\frac{4}{a+b-c}\)\(\ge\)\(\frac{4}{c}\)+\(\frac{4}{b}\)+\(\frac{4}{a}\)

\(\frac{2}{b+c-a}\)+\(\frac{2}{a+c-b}\)+\(\frac{2}{a+b-c}\)\(\ge\)2(\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\))

Vậy\(\frac{1}{p-a}\)+\(\frac{1}{p-b}\)+\(\frac{1}{p-c}\)\(\ge\)2(\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\))

dấu = xảy ra khi a=b=c

No_pvp
12 tháng 7 2023 lúc 16:37

Mày nhìn cái chóa j


Các câu hỏi tương tự
Ác Quỷ Bóng Đêm
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Lê Ngọc Bảo Châu
Xem chi tiết
namblue
Xem chi tiết
Hoàng Nguyễn Quỳnh Khanh
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết