Ta có ; \(\frac{a^2}{b^2}+\frac{b^2}{a}-\left(\frac{a}{b}+\frac{b}{a}\right)\ge\Leftrightarrow\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}\right)-2\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\ge0\)
Lại có : \(\frac{a}{b}+\frac{b}{a}\ge2\)
Suy ra \(\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}\right)-2\left(\frac{a}{b}+\frac{b}{a}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{a^2}{b^2}-\frac{2a}{b}+1\right)+\left(\frac{b^2}{a^2}-\frac{2b}{a}+1\right)\ge0\)
\(\Leftrightarrow\left(\frac{a}{b}-1\right)^2+\left(\frac{b}{a}-1\right)^2\ge0\) (luôn đúng)
Vậy bđt ban đầu dc chứng minh