Cho các số thực dương a,b,c thảo mãn \(a^2+b^2+c^2=1\). CHứng minh:
\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ac\)
Cho a, b, c > 0. CMR : \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
1)Cho a;b;c>0 thỏa \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\)
Chứng minh \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le1\)
2) Cho a;b;c>0
CMR \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Cho a;b;c>0 thỏa a+b+c=3
CMR \(\dfrac{a+b}{\sqrt{a^2+b^2+6c}}+\dfrac{b+c}{\sqrt{b^2+c^2+6a}}+\dfrac{c+a}{\sqrt{c^2+a^2+6b}}>2\)
cho a,b,c >0 .chứng minh
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}+\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}+\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\le8\)
Cho a, b, c > 0 thỏa mãn : \(\dfrac{3}{b}+\dfrac{4}{a}+\dfrac{4}{c}=3\)
Tìm GTNN của : \(A=\dfrac{2\left(a+b\right)^2}{2a+3b}+\dfrac{\left(b+2c\right)^2}{2b+c}+\dfrac{\left(2c+a\right)^2}{c+2a}\)
(Hình như là đề QN 15-16 :v)
Cho \(a,b,c\) là các số thực dương thỏa mãn \(abc=1.\) Chứng minh rằng:
\(\sqrt[4]{2a^2+bc}+\sqrt[4]{2b^2+ac}+\sqrt[4]{2c^2+ab}\)
\(\le\dfrac{ab+bc+ca}{\sqrt[4]{3}}.\sqrt{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Cho a,b,c là các số thực dương. CMR:
\(\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}+\dfrac{c\left(2b-c\right)}{b\left(c+a\right)}+\dfrac{a\left(2c-a\right)}{c\left(a+b\right)}\le\dfrac{3}{2}\)
Cho a, b, c > 0, abc = 8
Tìm \(MaxP=\dfrac{1}{2a+b+c}+\dfrac{1}{2b+c+6}+\dfrac{1}{2c+a+6}\)
câu 1: Cho a,b,c là các số không âm thỏa a+b+c=3.chứng minh
\(\dfrac{a^2}{a+b^2}+\dfrac{b^2}{b+c^2}+\dfrac{c^2}{c+a^2}\ge\dfrac{3}{2}\)
câu 2: cho a,b,c là 3 cạnh của 1 tam giác . chứng minh
\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}+\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}+\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}\)
câu 3:tìm tất cả nghiệm nguyên dương của phương trình
xyz+xy+yz+xz+x+y+z=2015 thỏa \(x\ge y\ge z\ge8\)