Bạn coi lại phân thức đầu tiên, có vẻ không hợp lý
Mẫu số là \(2a+b+c\) hay \(2a+b+6?\)
Bạn coi lại phân thức đầu tiên, có vẻ không hợp lý
Mẫu số là \(2a+b+c\) hay \(2a+b+6?\)
Cho a, b, c > 0. CMR : \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho các số thực dương a, b, c thoả mãn: \(abc=1\). Tìm giá trị lớn nhất của biểu thức: \(P=\dfrac{1}{\sqrt{2a^3+b^3+6}}+\dfrac{1}{\sqrt{2b^3+c^3+6}}+\dfrac{1}{\sqrt{2c^3+a^3+6}}\)
Cho a,b,c,d>0.Tìm GTNN của
S=\(\left(1+\dfrac{2a}{3b}\right)\left(1+\dfrac{2b}{3c}\right)\left(1+\dfrac{2c}{3d}\right)\left(1+\dfrac{2d}{3a}\right)\)
a, cho \(a>0\), \(b>0\) . CM : \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
b , cho 3 số a , b , c thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=16\)
CM : \(\dfrac{1}{3a+2b+c}+\dfrac{1}{a+3b+2c}+\dfrac{1}{2a+b+3c}\le\dfrac{8}{3}\)
Với a;b;c>0
Cm:
\(\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\le\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\)
cho a,b,c là các số dương thỏa mãn abc=1
CMR: \(\dfrac{1}{2a+1}+\dfrac{1}{2b+1}+\dfrac{1}{2c+1}\ge1\)
1)Cho a;b;c>0 thỏa \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\)
Chứng minh \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le1\)
2) Cho a;b;c>0
CMR \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Cho a;b;c>0 thỏa a+b+c=3
CMR \(\dfrac{a+b}{\sqrt{a^2+b^2+6c}}+\dfrac{b+c}{\sqrt{b^2+c^2+6a}}+\dfrac{c+a}{\sqrt{c^2+a^2+6b}}>2\)
cho a,b,c >0 .chứng minh
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}+\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}+\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\le8\)
Cho các số thực dương a,b,c thảo mãn \(a^2+b^2+c^2=1\). CHứng minh:
\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ac\)